N-T.ru / Раритетные издания / Популярная библиотека химических элементов |
Популярная библиотека химических элементовКриптон
Впервые криптоном был назван газ, выделенный Уильямом Рамзаем из минерала клевеита. Но очень скоро пришлось это имя снять и элемент «закрыть». Английский спектроскопист Уильям Крукс установил, что газ не что иное, как уже известный по солнечному спектру гелий. Спустя три года, в 1898 г., название «криптон» вновь появилось, его присвоили новому элементу, новому благородному газу. Открыл его опять же Рамзай, и почти случайно «шел в дверь, попал в другую». Намереваясь выделить гелий из жидкого воздуха, ученый вначале пошел было по ложному следу: он пытался обнаружить гелий в высококипящих фракциях воздуха. Разумеется, гелия, самого низкокипящего из всех газов, там не могло быть, и Рамзай его не нашел. Зато он увидел в спектре тяжелых фракций желтую и зеленую линии в тех местах, где подобных следов не оставлял ни один из известных элементов. Так был открыт криптон, элемент, имя которого в переводе с греческого значит «скрытный». Название несколько неожиданное для элемента, который сам шел в руки исследователя. Родословная криптонаИзвестно, что гелий, радон, почти весь аргон и, вероятно, неон нашей планеты имеют радиогенное происхождение, т.е. они продукты радиоактивного распада. А как обстоит дело с криптоном? Среди известных природных ядерных процессов, порождающих криптон, наибольший интерес представляет самопроизвольное деление ядер урана и тория. В 1939 г. Г.Н. Флеров и К.А. Петржак установили, что в природе (очень редко) происходит самопроизвольное расщепление ядер урана-238 на два осколка примерно равной массы. Еще реже таким же образом делятся ядра232Th и 235U. Осколки это атомы изотопов средней части периодической системы элементов. Будучи неустойчивыми («перегруженными» нейтронами), эти осколки проходят по цепи последовательных бета-распадов. Среди конечных продуктов распада есть и стабильные тяжелые изотопы криптона. Подсчеты, однако, показывают, что радиоактивный распад (включая деление урана-235 медленными нейтронами) не главный «изготовитель» криптона. За время существования Земли (если считать его равным 4,5 млрд лет) эти процессы смогли выработать не более двух-трех десятых процента существующего на нашей планете элемента №36. Откуда в таком случае основная его масса? Сегодня на этот вопрос даются два обоснованных, но разных по смыслу ответа. Часть ученых считает, что земной криптон возник в недрах планеты. Прародителями криптона были трансурановые элементы, некогда существовавшие на Земле, но теперь уже «вымершие». Следы их существования усматривают в том, что в земной коре есть элементы-долгожители нептуниевого радиоактивного ряда (ныне целиком искусственно воссозданного). Другой подобный след микроколичества плутония и нептуния в земных минералах, хотя они могут быть и продуктами облучения урана космическими нейтронами. В пользу этой гипотезы говорит тот факт, что искусственно полученные актиноиды (не все, но многие) активные «генераторы» криптона. Их ядра самопроизвольно делятся намного чаще, чем ядра атомов урана. Сравните периоды полураспада по спонтанному делению: 8,04 · 1015 лет для урана-238 и всего 2000 лет для калифорния-246. А для фермия и менделевия соответствующие периоды полураспада измеряются всего лишь часами. Иного мнения придерживается другая группа ученых. На их взгляд, земной криптон (как и ксенон) пришел на Землю из Вселенной, в процессе зарождения Земли. Он присутствовал еще в протопланетном облаке, его сорбировала первичная земная материя, откуда он потом, при разогреве планеты, выделился в атмосферу. Это мнение тоже опирается на факты. В его пользу говорит, в частности, то, что криптон газ тяжелый, малолетучий и относительно легко конденсирующийся (в отличие от иных компонентов первичной атмосферы) вряд ли смог бы оставить Землю на первых фазах ее формирования. Кто же прав? Скорее всего, правы обе стороны: криптон нашей планеты, вероятно, представляет собою смесь газов как космического, так и земного происхождения. По данным исследований последних лет, земного намного больше. Что же представляет собой эта смесь? Глазами физика и химикаГазообразный криптон в 2,87 раза тяжелее воздуха, а жидкий в 2,14 раза тяжелее воды. Криптон превращается в жидкость при 153,9°C, а уже при 156,6°C он отвердевает. Заметим попутно, что малые температурные интервалы между жидким и твердым состояниями характерны для всех благородных газов. Это свидетельствует о слабости сил межмолекулярного взаимодействия, что вполне естественно: у этих атомов «замкнутые», целиком заполненные электронные оболочки. Молекула криптона одноатомна. Криптон первый из тяжелых благородных газов. Такое деление не искусственно. Обратите внимание на большой разрыв между значениями критических величин легких и тяжелых благородных газов. У первых они крайне низки, у вторых значительно выше. Так, точки кипения криптона и гелия разнятся, на 116,1°C. Сильно разнятся и другие важнейшие характеристики. Объяснить это логичнее всего характером сил межмолекулярного взаимодействия: с увеличением молекулярного веса благородного газа резко вырастает сила взаимопритяжения молекул. Криптон достаточно редкий и рассеянный газ. На Земле его больше всего в атмосфере 3·104% (по весу). Содержание криптона в атмосфере очень медленно (даже в масштабах геологических эпох) нарастает: криптон «выдыхают» некоторые минералы. Природный криптон состоит из шести стабильных изотопов: 78Kr, 80Kr, 82Kr, 83Kr, 84Kr и 86Kr. И все они есть в горных породах, природных водах и атмосфере. Обильнее прочих представлен 84Kr, на его долю приходится 56,9% атмосферного криптона. В ядерных реакциях искусственно получены 17 радиоактивных изотопов криптона с массовыми числами от 74 до 97. Некоторые из этих изотопов нашли применение как радиоактивные индикаторы и генераторы излучения. Особо важным оказался криптон-85 почти чистый бета-излучатель с периодом полураспада 10,3 года. Спектр криптона изобилует линиями во всем видимом диапазоне, особенно в коротковолновой области. Самые яркие линии расположены между 4807 и 5870 Ǻ, оттого в обычных условиях криптон дает зеленовато-голубое свечение. Благодаря хорошей растворимости в жидкостях организма криптон при парциальном давлении 3,5 атм уже оказывает наркотическое действие на человека. А теперь о химии криптона. В атоме криптона 36 электронов, распределенных на четырех энергетических уровнях (оболочках). Это обстоятельство в физическом и отчасти химическом смысле приближает криптон к обычным, «нормальным» газам. Почему? В атомах тяжелых благородных газов внешние электронные оболочки замкнутые. Но будучи сравнительно отдаленными от ядра, оболочки получают некоторую автономность. Чем тяжелее атомы инертного газа, тем больше их способность объединяться с некоторыми другими атомами. Химия «инертных» газов (теперь без кавычек не обойтись) новая область науки. Но возникла она не на голом месте. Еще в первой четверти XX в. ученые наблюдали образование в электрическом разряде ионизированных молекул инертных газов и как будто бы соединений этих газов с другими элементами. Вне разряда эти образования быстро распадались, и первые сообщения о соединениях инертных газов казались малообоснованными. Позже стали известны кристаллические клатратные* соединения криптона с H2O, H2S, SO2, галогеноводородами, фенолами, толуолом и другими органическими веществами. Они устойчивы даже при комнатной температуре под давлением 2...4 атм. Но еще в 40-х годах советский ученый Б.А. Никитин показал, что в клатратных соединениях связь молекулярная, в них валентные электроны не взаимодействуют. * Клатратные соединения (или соединения включения) вещества, занимающие промежуточное положение между твердыми растворами и истинными химическими соединениями. В 1933 г. Лайнус Полинг, позже дважды лауреат Нобелевской премии, развивая представление о валентных связях, предсказал возможность существования фторидов криптона и ксенона. Но лишь в 1962 г. было получено первое такое соединение гексафтороплатинат ксенона. Вслед за тем были синтезированы фториды криптона, ксенона, радона и многочисленные их производные. Разумеется, соединения криптона и других благородных газов получить не легко. Так, кристаллический KrF2 был получен в результате воздействия тихого электрического разряда на смесь из фтора, криптона и аргона в молярном отношении 1:70:200. Условия реакции: давление 20 мм ртутного столба, температура минус 183°C. Свойства дифторида криптона достаточно обычны: при комнатной температуре он неустойчив, но при температуре сухого льда (78°C) его можно хранить очень долго. И не только хранить, а и исследовать взаимодействие этих бесцветных кристаллов с другими веществами. Дифторид криптона весьма активный окислитель. Он вытесняет хлор из соляной кислоты и кислород из воды. Реагируя с органическими соединениями, он не только окисляет их иногда при этом происходит замена хлора на фтор в органической молекуле. Впрочем, многие органические вещества, например этиловый спирт, от соприкосновения с дифторидом криптона воспламеняются. Через фторид криптона получены соединения этого элемента с переходными металлами; во всех этих соединениях есть и фтор. Общая формула таких соединений KrF+MeF6. Исключения составляют соединения мышьяка и сурьмы: Kr2F3+AsF6, Kr2F3+SbF6 и KrF+Sb2F11. В реакциях с дифторидом криптона как очень сильным окислителем были получены некоторые уникальные неорганические соединения пентафторид золота АuF6, гептафторид брома ВrF7, перброматы. Извлечение из воздухаКриптон получают из воздуха. Но чтобы получить литр элемента №36, приходится переработать более миллиона литров воздуха. Тем не менее, современные масштабы производства кислорода позволяют попутно извлекать довольно значительное, и с каждым годом возрастающие количества криптона. Как наименее летучие компоненты воздуха, криптон и ксенон скапливаются в самой «теплой» части воздухоразделительного аппарата вместе с жидким кислородом. Из него-то и выделяют элемент №36. Ожиженную кислородную фракцию направляют в ректификационную колонну, нижняя часть, или «пристройка», которой (конденсатор) охлаждается жидким азотом. Здесь получается «бедный» криптоновый концентрат, содержащий 0,1...0,2% Kr; этот «бедняк» в 400 раз богаче криптоном, чем исходный кислород. Прежде чем продолжить ректификацию, «бедный» концентрат очищают от метана, ацетилена и прочих углеводородов. Такая операция необходима, чтобы исключить опасность взрыва на последующих стадиях отделения криптона. Микропримеси углеводородов в воздухе есть всегда. Причины их появления: испарение нефтепродуктов, утечка природного газа, бактериальный распад органических остатков и, наконец, промышленные выбросы. В. контактных аппаратах при 700°C в присутствии катализатора CuO или Al2O3 большая часть углеводородов выгорает. Очищенную смесь кислорода и криптона снова превращают в жидкость и отправляют во вторую ректификационную колонну. Здесь получают уже богатый концентрат в нем 10...20% криптона. Но параллельно опять возрастает содержание углеводородов. И опять смесь переводится в газообразное состояние, и опять следует выжигание углеводородов. Затем весь этот цикл повторяется еще раз. Окончательная криптоно-ксеноновая смесь содержит 90...98% Kr + Xe. Для тонкой очистки этой смеси остатки кислорода связывают водородом в воду, а примесь азота удаляют, пропуская смесь над стружками магния, азот реагирует с ним, образуя нитрид. Последний этап разделение криптона и ксенона. Жидкую смесь опять превращают в газ и направляют в адсорбер с активированным углем. Здесь при температуре 65...75°C ксенон и некоторое количество криптона поглощаются углем, а выходящий из адсорбера газ содержит по меньшей мере 97% криптона. «Светить всегда»Производство электроламп главный потребитель криптона. Небольшие грибовидные лампы с криптоновым (или криптоно-ксеноновым) наполнением постепенно теснят лампы аргоно-азотного наполнения, которые в свое время вытеснили пустотные и азотонаполненные лампы. Достоинства криптона в лампах накаливания очевидны: он в 2,1 раза тяжелее аргона и почти вдвое хуже проводит тепло. В более плотном газе замедляется распыление раскаленной вольфрамовой нити это увеличивает стабильность светового потока. Малая же теплопроводность криптона способствует увеличению доли видимого излучения в общем потоке лучистой энергии. Криптоновое наполнение в сравнении с аргоновым повышает мощность ламп на 5...15% и сроки службы на 40...170%. Вдобавок наполовину уменьшается объем колбы. Криптоном заполняют и газосветные трубки низкого давления преимущественно рекламные. Используют этот газ и в конструкциях ламп высокого давления. Яркий белый (с розоватым оттенком) свет таких ламп нужен в лакокрасочной и текстильной промышленности, при освещении сцен телевизионных студий, при киносъемках. Некоторые из таких ламп служат мощными источниками инфракрасного излучения. Главное назначение криптона сегодня «светить всегда, светить везде до дней последних донца, светить и никаких гвоздей...» Впрочем, не исключено, что будущие соединения криптона и в производстве гвоздей окажутся не лишними. Самая постояннаяЕще недавно эталоном метра был платино-иридиевый стержень, хранящийся в Севре близ Парижа. Но с течением времени росла необходимость в точности линейных измерении. Драгоценная палка как эталон уже не удовлетворяла, и в 1960 г. заключили международное соглашение, определяющее метр, как 1650763,73 длины волны оранжевой линии стабильного изотопа криптон-86. Криптон в землюРазвитие ядерной энергетики обострило вопрос захоронения радиоактивных отходов, в том числе и криптона-85. Чтобы исключить выброс его в атмосферу и связанную с этим радиационную опасность, предложено закачивать этот газ под землю в пористые породы. Для этой цели пригодны, в частности, пласты выработанных газовых месторождений. Этот способ применяют на практике с середины 50-х годов. «Атомные лампы»В 1957 г. на некоторых железных дорогах и рудниках США появились так называемые атомные лампы предупредительные светящиеся знаки, не нуждающиеся в электропитании. В этих лампах есть радиоизотопы криптона, в основном 85Kr; их излучение вызывает свечение специального состава, нанесенного на внутреннюю поверхность рефлектора. Свет такой лампы виден на расстоянии 500 м. Что говорит теорияОткрытие истинных химических соединений криптона, ксенона и радона не повлекло за собой коренной ломки наших представлений о химической связи. Сдвинулись лишь акценты. Вот, в общих чертах, две трактовки связи в молекуле дифторида криптона. При контакте с таким активным партнером как фтор, электроны атома криптона переходят с p-орбитали на вакантную d-орбиталь; это ведет к образованию гибридной pd-орбитали, возникает ковалентная связь между «партнерами». Вторая трактовка: p-орбиталь атома криптона, несущая два электрона, вступает во взаимодействие с двумя одноэлектронными орбиталями атома фтора. Возникает смешанная ковалентно-ионная делокализованная связь.
Рубидий |
Дата публикации: 3 июля 2002 года |
|