N-T.ru / Раритетные издания / Популярная библиотека химических элементов |
Популярная библиотека химических элементовАстат
Астат пятый галоген наименее распространенный элемент на нашей планете, если, конечно, не считать трансурановые элементы. Приблизительный расчет показывает, что во всей земной коре содержится лишь около 30 г астата, и эта оценка самая оптимистическая. У элемента №85 стабильных изотопов нет, а самый долгоживущий радиоактивный изотоп имеет период полураспада 8,3 часа, т.е. от полученного утром астата к вечеру не остается и половины. Таким образом, в названии астата а по-гречески αστατος значит «неустойчивый» удачно отражена природа этого элемента. Чем же тогда может быть интересен астат и стоит ли заниматься его изучением? Стоит, ибо астат (так же, как прометий, технеций и франций) в полном смысле слова создан человеком, и изучение этого элемента дает много поучительного прежде всего для познания закономерностей в изменении свойств элементов периодической системы. Проявляя в одних случаях металлические свойства, а в других неметаллические, астат представляет собой один из наиболее своеобразных элементов. До 1962 г. в русской химической литературе этот элемент называли астатином, а теперь за ним закрепилось название «астат», и это, видимо, правильно: ни в греческом, ни в латинском названии этого элемента (по-латыни astatium) нет суффикса «ин». Поиски экаиодаД. И, Менделеев именовал последний галоген не только экаиодом, но и галоидом X. Он писал в 1898 г.: «Можно, например, сказать, что при открытии галоида X с атомным весом, большим, чем иод, он все же будет образовывать KX, KXO3 и т.п., что его водородное соединение будет газообразной, очень непрочной кислотой, что атомный весь будет... около 215». В 1920 г. немецкий химик Э. Вагнер вновь привлек внимание к все еще гипотетическому пятому члену группы галогенов, утверждая, что этот элемент должен быть радиоактивным. Тогда и начались интенсивные поиски элемента №85 в природных объектах. В предположениях о свойствах 85-го элемента химики исходили из местоположения его в периодической системе и из данных о свойствах соседей этого элемента по таблице Менделеева. Рассматривая свойства других членов группы галогенов, легко заметить следующую закономерность: фтор и хлор газы, бром уже жидкость, а иод твердое вещество, проявляющее, хотя и в малой степени, свойства металлов. Экаиод самый тяжелый галоген. Очевидно, он должен быть еще более металлоподобен, нежели иод, и, обладая многими свойствами галогенов, так или иначе похож и на своего соседа слева полоний... Вместе с другими галогенами экаиод, по-видимому, должен находиться в воде морей, океанов, буровых скважин. Его пытались, подобно иоду, искать в морских водорослях, рассолах и т.п. Английский химик И. Фриенд пытался найти нынешние астат и франций в водах Мертвого моря, в которых, как было известно, и галогенов, и щелочных металлов более чем достаточно. Для извлечения экаиода из раствора хлоридов осаждалось хлористое серебро; Фриенд полагал, что осадок увлечет за собой и следы 85-го элемента. Однако ни рентгеноспектральный анализ, ни масс-спектрометрия не дали положительного результата. В 1932 г. химики Политехнического института штата Алабама (США) во главе с Ф. Аллисоном сообщили, что ими из монацитового песка выделен продукт, в котором содержится около 0,000002 г одного из соединений элемента №85. В честь своего штата они назвали его «алабамий» и описали даже его соединение с водородом и кислородсодержащие кислоты. Название «алабамий» для 85-го элемента фигурировало в учебниках и справочниках по химии до 1947 г. Однако уже вскоре после этого сообщения у нескольких ученых возникли сомнения в достоверности открытия Аллисона. Свойства алабамия резко расходились с предсказаниями периодического закона. Кроме того, к этому времени стало ясно, что все элементы тяжелее висмута не имеют стабильных изотопов. Допустив же стабильность элемента №85, наука оказалась бы перед необъяснимой аномалией. Ну, а если элемент №85 не стабилен, тогда на Земле его можно обнаружить лишь в двух случаях: если у него есть изотоп с периодом полураспада больше возраста Земли или если его изотопы образуются при распаде долгоживущих радиоактивных элементов. Предположение, что элемент №85 может быть продуктом радиоактивного распада других элементов, стало отправной точкой для другой большой группы исследователей, занимавшихся поисками экаиода. Первым в этой группе следует назвать известного немецкого радиохимика Отто Гана, который еще в 1926 г. предположил возможность образования изотопов 85-го элемента при бета-распаде полония. За 19 лет, с 1925 по 1943 г., в периодической печати появилось по меньшей мере полдюжины сообщений об открытии экаиода. Ему приписывали определенные химические свойства, присваивали звучные названия: гельвеций (в честь Швейцарии), англогельвеций (в честь Англии и Швейцарии), дакин (от названия древней страны даков в Средней Европе), лептин (в переводе с греческого «слабый», «шаткий», «обездоленный») и т.д. Однако первое достоверное сообщение об открытии и идентификации элемента №85 сделали физики, занятые синтезом новых элементов. На циклотроне Калифорнийского университета Д. Корсон, К. Мак-Кензи и Э. Сегре облучили альфа-частицами мишень из висмута. Энергия частиц составляла 21 МэВ, и ядерная реакция получения элемента №85 была такова: 20983Bi + 42He → 21185At + 2 10n. Новый синтетический элемент получил название лишь после войны, в 1947 г. Но еще раньше, в 1943 г., было доказано, что изотопы астата образуются во всех трех рядах радиоактивного распада. Следовательно, астат есть в природе. Астат в природеАстат в природе первыми нашли австрийские химики Б. Карлик и Т. Бернерт. Изучая радиоактивность дочерних продуктов радона, они обнаружили, что незначительная часть радия-А (так называли тогда, да и сейчас еще называют, изотоп 218Po) распадается двояко (так называемая радиоактивная вилка): В свежевыделенном образце RaA наряду с альфа-частицами, порождаемыми полонием-218, были зарегистрированы и альфа-частицы с иными характеристиками. Как раз такие частицы могли, по теоретическим оценкам, испускать ядра изотопа 21885. Позже в других опытах были обнаружены короткожи-вущие изотопы 215At, 216At и 217At. А в 1953 г. американские радиохимики Э. Хайд и А. Гиорсо химическим путем выделили изотоп 219At из франция-223. Это единственный случай химической идентификации изотопа астата из имеющегося в природе изотопа. Намного проще и удобней получать астат искусственным путем. Обнаружить, выделить, узнатьПриведенную выше реакцию облучения висмуса альфа-частицами можно использовать и для синтеза других изотопов астата. Достаточно повысить энергию бомбардирующих частиц до 30 МэВ, как пойдет реакция с вылетом трех нейтронов и вместо астата-211 образуется астат-210. Чем выше энергия альфа-частиц, тем больше образуется вторичных нейтронов и тем меньше, следовательно, массовое число образующегося изотопа. В качестве мишеней для облучения используют металлический висмут или его окись, которые наплавляют или напыляют на алюминиевую или медную подложку. Рис. 6. Зависимость между энергией испускаемых альфа-частиц и массовым числом (или числом нейтронов в ядре) изотопов астата Другой метод синтеза астата состоит в облучении ускоренными ионами углерода мишени из золота. В этом случае происходит, в частности, такая реакция: 19779Au + 126C → 20585At + 4 10n. Для выделения образующегося астата из висмутовых или золотых мишеней используют достаточно высокую летучесть астата он же все-таки галоген! Дистилляция происходит в токе азота или в вакууме при нагревании мишени до 300...600°C. Астат конденсируется на поверхности стеклянной ловушки, охлаждаемой жидким азотом или сухим льдом. Еще один способ получения астата основан на реакциях расщепления ядер урана или тория при облучении их альфа-частицами или протонами высоких энергий. Так, например, при облучении 1 г металлического тория протонами с энергией 680 МэВ на синхроциклотроне Объединенного института ядерных исследований в Дубне получается около 20 микрокюри (иначе 3·1013 атомов) астата. Однако в этом случае гораздо труднее выделить астат из сложной смеси элементов. Эту нелегкую проблему сумела решить группа радиохимиков из Дубны во главе с В.А. Халкиным. Сейчас известно уже 20 изотопов астата с массовыми числами от 200 до 219. Самый долгоживущий из них изотоп 210At (период полураспада 8,3 часа), а самый короткоживущий 214At (2·106 секунды). Поскольку астат не может быть получен в весомых количествах, его физические и химические свойства изучены неполно, а физико-химические константы чаще всего рассчитываются по аналогии с более доступными соседями по периодической системе. В частности, вычислены температуры плавления и кипения астата 411 и 299°C, т.е. астат, как и иод, должен легче возгоняться, чем плавиться. Все исследования по химии астата проводились с ультрамалыми количествами этого элемента, порядка 109...1013 г на литр растворителя. И дело даже не в том, что нельзя получить более концентрированные растворы. Если бы их и удалось получить, работать с ними было бы крайне сложно. Альфа-излучение астата приводит к радиолизу растворов, сильному их разогреву и образованию больших количеств побочных продуктов. И все же, несмотря на все эти трудности, несмотря на то, что количество атомов астата в растворе сравнимо со случайными (хотя и тщательно избегаемыми) загрязнениями, в изучении химических свойств астата достигнуты определенные успехи. Установлено, что астат может существовать в шести валентных состояниях от 1 до 7+. В этом он проявляет себя как типичный аналог иода. Как и иод, он хорошо растворяется в большинстве органических растворителей, но зато легче, чем иод, приобретает положительный электрический заряд. Получены и изучены свойства ряда межгалогенных соединений астата, например AtBr, AtI, CsAtI2. Попытка с годными средствамиПервые попытки применить астат на практике были предприняты еще в 1940 г., сразу же после получения этого элемента. Группа сотрудников Калифорнийского университета установила, что астат, подобно иоду, селективно концентрируется в щитовидной железе. Опыты показали, что использовать 211At для лечения заболеваний щитовидной железы более выгодно, чем радиоактивный 131I. Астат-211 испускает лишь альфа-лучи весьма энергичные на небольших расстояниях, но не способные уйти далеко. В итоге они действуют лишь на щитовидную железу, не затрагивая соседнюю паращитовидную. Радиобиологическое действие альфа-частиц астата на щитовидную железу в 2,8 раза сильнее, чем бета-частиц, излучаемых иодом-131. Это говорит о том, что в качестве терапевтического средства при лечении щитовидной железы астат весьма перспективен. Найдено и надежное средство выведения астата из организма. Роданид-ион блокирует накопление астата в щитовидной железе, образуя с ним прочный комплекс. Так что элемент №85 уже нельзя назвать практически бесполезным.
Радон |
Дата публикации: 12 сентября 2003 года |
|