N-T.ru / Раритетные издания / Вольфдитрих Эйхлер

Яды в нашей пище

Вольфдитрих Эйхлер

11. Рассказ о скопе

У пойманной в Швеции на исходе лета скопы «этого года рождения» все большие маховые перья отличались высоким содержанием ртути, так как она ведь питалась рыбой из шведских водоемов, а в ней всегда много Hg. Когда же исследовали весной скопу, вернувшуюся в Швецию из Африки, то у нее 4-е и 8-е большие маховые перья тоже содержали большие количества ртути; это были те самые перья, которые у нее выросли в прошлом году в Швеции. Иное дело перья 1, 2, 3, 5, 6 и 7: ртути в них почти не было. Они-то ведь сменились во время зимней линьки, а в Африке рыба (пока еще!) не содержала ртути.

Хяккинен и Хясянен (Häkkinen, Häsänen) при исследовании скоп в Финляндии нашли, что содержание ртути у них сильно варьирует. После запрета на применение ртутных препаратов фоновый уровень ртути снизился, однако размножение скоп не стало более эффективным.

12. Содержание ртути в животных организмах

Содержание метилртути в рыбах Балтийского и Северного морей (в мг/кг): у щуки в Финляндии 3, в Швеции 5...6, в Нидерландах 10; у угря в Нидерландах 2; у окуня в Финляндии 2. Рыбы с содержанием ртути 20 мг/кг считаются обреченными на гибель.

Содержание ртути в печени или в печеночно-почечном гомогенате птиц в Швеции (в мг/кг): у пустельги до 41 (у 50% птиц более 2); у ястреба у 80% птиц больше 2, у 50% больше 5, у 25% больше 25; у сарыча 10; у кряквы 60; у пеганки (в печени) 40.

Содержание ртути в перьях птиц Швеции (в мг/кг): у чомги около 15; у скопы около 15 (летальная доза около 20 мг/кг, т.е. птицы с таким высоким содержанием ртути в перьях уже погибают от ртутного отравления); у сокола-сапсана 50; у орлана-белохвоста до 60; у филина 20 – 40.

Рыбы в Рейне возле Карлсруэ содержат ртуть в количестве 0,4 мг/кг, а около Маннхейма уже 1,3. В США 811 из 853 исследованных особей меч-рыбы содержали слишком много ртути. В консервах из тунца (США) концентрация Hg составляла 1,3 мг/кг.

У побережья Новой Зеландии в пробах донного грунта ртути содержалось менее 1 мг/кг, в различных моллюсках 0,02, а в устрицах (которые весьма активно накапливают Hg) даже 0,08 мг/кг. Естественным содержанием ртути в рыбе считают в Японии 0,1, а в Финляндии 0,2 мг/кг. Рыбы могут аккумулировать в своем организме ртуть, повышая ее концентрацию почти в 3000 раз, и при этом они получают ртуть не только через свою пищевую цепь, но и непосредственно из воды.

В то время как в Швеции зерноядные и питающиеся рыбой виды птиц накапливали ртутные остатки в угрожающих количествах, белые куропатки и беркуты совершенно не содержали ртути: дело в том, что они не едят ни посевного зерна на полях, ни рыбы.

У горных серн содержание ртути в почках с мая по октябрь составляло всего лишь четверть того количества, которое определялось у них в зимние месяцы, когда они находятся в долинных участках Альп.

Упрощенная схема превращений ртути в воде

Рис. 11. Упрощенная схема превращений ртути в воде. Все формы ртути прямым или непрямым путем переходят в метилртуть (по Jernelöv из Eichler, 1972)

13. Преобразование соединений ртути в водной среде

Каким бы путем ртуть ни попадала в воду, микроорганизмы метилируют ее, и при этом всегда образуется метилртуть. Это соединение жирорастворимо, чрезвычайно ядовито и очень устойчиво. Поэтому оно представляет собой одну из самых ядовитых форм ртути, о чем нам не следует забывать. На рис. 11 показано, как «все пути ведут к метилртути». Чтобы облегчить восприятие, здесь приведена упрощенная схема; более детализированную общую схему можно найти в работе Ернелёва (Jernelöv, 1969).

14. Опасность метилртути для человека

Усиленное потребление рыбы человеком даже при относительно низкой концентрации в ней метилртути (например, порядка 0,8 мг/кг у окуня или 1,6 мг/кг у щуки) приводит к отложению ртути в волосах в количестве 50 мг/кг. При таком содержании ртути в волосах (а оно возможно и при меньшем потреблении рыбы, если концентрация ртути в щуках составляет 2 мг/кг) у человека уже начинают проявляться отчетливые признаки заболевания. Если же в волосах содержится около 300 мг/кг, то это означает опасность для жизни.

Как выяснилось, волосы человека могут служить удобным индикатором в случае угрозы ртутного отравления; они являются как бы шкалой, показывающей степень накопления ртути в организме. При этом концентрации Hg в волосах до 10 мг/кг считаются еще безопасными, так как они возможны даже при потреблении воды и рыбы, практически не содержащих ртути.

Однако наличие ртути в природе – это для человека не только вопрос о том, должен ли он есть больше или меньше рыбы; остается еще вопрос, как влияет присутствие ртути в организме на вещество наследственности. А между прочим было обнаружено, что метилртуть вызывает в клетках тканевых культур аномальные митозы (так называемые К-митозы), а также поломки хромосом, причем ее воздействие в 1000 раз превышает эффект от колхицина.


Рис. 12. Жертва врожденной «болезни Минамата» в Японии. В результате того что мать регулярно потребляла рыбу, отравленную метилртутью, ребенок родился неизлечимо больным (фото из архива Хёрца)

У японских детей с врожденным отравлением метилртутью была обнаружена необычно высокая частота уродств. Шведскими учеными было доказано, что у людей, которые питались рыбой, содержавшей метилртуть, статистически достоверно повышена частота хромосомных аберраций по сравнению с контрольной группой нормально питавшихся лиц. А ведь поломки хромосом – это такой кариологический факт, который более всего подкрепляет подозрение в том, что метилртуть может вызывать врожденные уродства или другие структурные аномалии (а также и психические дефекты!).

Токсикологию металлической ртути считали хорошо изученной и широко известной. Однако трагедия у реки Минамата показала нам, что органические соединения ртути по характеру их токсичности следует рассматривать особо и что в данном случае доминируют поражения головного мозга: на это указывает не только столь типичное для болезни Минамата ограничение полей зрения, вплоть до угрозы полной слепоты, но и нарушенная координация движений, из-за которой больные напоминают «дышащих деревянных кукол». Еще более серьезной следует считать опасность минимальных доз для эмбрионов. У зародышей леопардовой лягушки (Rana pipiens) даже такие концентрации метилртути, как 1...5 мкг/кг, уже вызывают специфические аномалии и препятствуют дальнейшему развитию. У людей дозы ртути, которые кажутся вполне безвредными для матери, могут повреждать мозг плода; у кошек это было подтверждено экспериментально. Разумно ли после этого все еще объявлять концентрацию ртутных остатков 0,15 мг/кг совершенно безвредной для взрослых и утверждать, что будто бы тот, кто ест рыбу с содержанием ртути 1 мг/кг только раз в неделю, не подвергается никакой опасности?

Метилртуть не оказывает тератогенного действия* на крыс, зато вполне проявляет его на мышах. В последнее время польские врачи считают возможным, что ртуть вызывает лейкемию.

* Тератогенный – вызывающий уродства. – Прим. перев.

Наземные и водные пищевые цепи метилртути, рассмотренные выше, – это, так сказать, классические пути, через которые человек получает вместе с пищей ртутную нагрузку. И повторяющиеся снова и снова случаи употребления в пищу посевного зерна, протравленного ртутью, здесь можно было бы оставить вначале без внимания, поскольку ясно, что такое зерно не предназначалось для питания. Однако теперь уже и в рисе найдены ртутные остатки в количестве 1 мг/кг. И отказ от рыбы тоже не служит надежной защитой от поступления ртути, если приготовляют рыбную муку и применяют ее в качестве корма для домашних животных. Даже растительная пищевая цепь с домашнего огорода может быть источником ртути, если к компосту было добавлено средство для улучшения структуры почвы, содержащее ртуть.

Подобные сведения поддерживают мою точку зрения: если установлено, что какому-нибудь дикому виду птиц угрожает вымирание из-за присутствия какого-то биоцида в природной среде, то это всегда должно означать сигнал тревоги – ведь опасность грозит и человеку!

Содержание ртути в волосах двух лиц, переставших потреблять рыбу из водоемов, загрязненных ртутью

Рис. 13. Содержание ртути в волосах двух лиц, переставших потреблять рыбу из водоемов, загрязненных ртутью (Nuorteva, 1971)

Тема моей книги – пищевые цепи, а не охрана труда, однако при обозрении всех путей, на которых человек может встретиться с ртутью, следует все же полноты ради упомянуть и о профессиональных группах, которые потенциально подвергаются подобному риску; к ним относятся горнорабочие ртутных рудников (например, в Испании); промышленные рабочие на химических заводах; химики; шляпочники.

15. Багдадская история

Если бы кто-нибудь спросил меня, нет ли у меня сомнений относительно какой-либо главы моей книги, все ли в ней действительно вполне достоверно, то я сделал бы следующую оговорку: «что касается иракской истории, то она, пожалуй, не слишком точна во всех деталях, так как здесь я складывал единую мозаику из камешков самого разного происхождения, и возможно, что среди них окажется и неверный; однако это не наносит ущерба принципиальной верности истории в целом».

Она началось с того, что один канадский студент-биолог услышал кое-что о шведской истории со ртутью. Познакомившись с нею, он взялся исследовать содержание ртути в рыбе реки Св. Лаврентия. И смотрите! Получилась точно такая же картина, которую мы уже знали по Швеции и Финляндии и которую выявили также выборочные пробы, взятые Уи (Ui) в Нидерландах и Италии во время его недолгого пребывания в Европе.

Канада, как известно, относится по старой традиции к тем странам, которые особенно чувствительно реагируют на попытки загрязнить ее природную среду. Поэтому протравливание семенного материала ртутью в Канаде было объявлено вне закона. Но куда же могли США продавать свое протравленное ртутью семенное зерно, после того как Канада выбыла из числа покупателей? В ней нуждался Ирак, однако взаимоотношения между США и Ираком как раз в то время были неважными.

Напротив, Мексика вполне устраивала Ирак как не внушающее подозрений государство-экспортер. Поэтому иракское правительство закупило семенное зерно в Мексике. При этом только посвященные могли бы позлословить насчет того, откуда, собственно, у Мексики могло взяться семенное зерно, протравленное ртутью, когда сама она, как известно, не имеет никакой технологии для того, чтобы протравливать зерно метилртутью.

Правительство Ирака делало все от него зависящее, чтобы при начавшемся в сентябре 1971 г. распределении семенного зерна каждый крестьянин знал, что имеет дело с протравленным, т.е. ядовитым, зерном. Однако, когда приходится иметь дело с сельским населением, по большей части неграмотным, все не так-то просто. Прежде всего импортированное семенное зерно выглядит намного лучше, чем местное; оно и на самом деле лучше, так как именно из-за этого оно и было импортировано в качестве семенного. И тут возникает большое искушение испечь из такого прекрасного зерна хлеб и отведать от этого лакомого куска. Тогда, правда, в будущем году не будет хорошего посевного зерна, а только прежнее, местное (а то и вовсе никакого) – но до той поры ведь еще столько времени, а там аллах поможет что-нибудь придумать. Кроме того, тут было и нечто другое. Прежнее иракское правительство однажды тоже импортировало семенное зерно, но тогда оно было непротравленным. Тем не менее, для того чтобы зерно не съели, было объявлено, что оно ядовито. Однако крестьяне очень быстро раскусили, что оно вполне съедобное.

Между прочим, в Ираке однажды уже имелось и протравленное семенное зерно, но оно было протравлено не метилртутью; а другие ртутноорганические протравители далеко не так опасны. Впрочем, поставленное Мексикой зерно тоже выдавалось за якобы протравленное фенилртутью; но химические анализы, произведенные после волны отравлений, во всех случаях выявляли почти исключительно метилртуть (Bakir et al.).

К этому следует добавить еще кое-что: в Ираке в некоторых группах сельского населения существует известное недоверие к сообщениям правительства. Правительство объявило, что зерно отравлено: неужели на сей раз это правда? Не вернее ли все-таки будет считать, что правительство лжет?

Находились и такие крестьяне, которым хотелось испытать все на деле. Они скармливали семенное зерно телятам, и у последних не наблюдалось немедленной реакции. Так значит, пожалуй, можно пустить это зерно на выпечку хлеба? Да и самих телят крестьяне резали и, не раздумывая, ели их мясо.

Они скармливали семенное зерно и курам, и те тоже сразу не реагировали. Однако здесь играла роль одна интересная особенность: у птиц-самок биоцид всегда переходит в яйца; таким образом, откладывая яйца, куры освобождались от яда, и у них не появлялось никаких симптомов отравления. А их яйца люди, как обычно, употребляли в пищу.

Конечно, семенное зерно, о котором идет речь, было окрашено в красно-бурый цвет, чтобы было видно, что зерно протравлено и, следовательно, ядовито. К сожалению, эта краска легко отмывалась. Кто же мог подумать о том, что вымывалась-то только краска, но не сам протравитель? И так как у тех, кто ел такой хлеб, очевидные признаки отравления появлялись нескоро, то в результате в январе 1972 г. началась катастрофическая реакция – несколько сотен человек умерли и, вероятно, тысячи (если не десятки тысяч) заболели. Как стало известно, в больницы было принято 6530 отравившихся, из которых 495 умерло. Как же велико было число пострадавших в целом? Установлено только то, что большинство отравлений произошло из-за потребления хлеба собственной выпечки.

Среди тех, кому была оказана врачебная помощь, более третьей части составляли дети до 9 лет. У людей старше 9 лет концентрация в крови ртути, превышавшая 3000 нг/мл, приводила к смертельному исходу.

Токсикология метилртути в то время была изучена совершенно недостаточно – откуда тут можно было знать, как лечить отравившихся! Во всяком случае, БАЛ (2,3-димеркаптопропанол) был противопоказан: хотя его применение и оправдало себя при отравлениях неорганической ртутью, в случае метилртути он мог бы даже усилить накопление Hg в головном мозгу. В конце концов было найдено, что для выведения ртути из организма в таких случаях наиболее пригодна тиоловая смола – речь идет о синтетической органической ионообменной смоле с сульфгидрильными группами, присоединенными к крупнопористому стирол-дивинил-бензольному сополимеру; такую смолу изготовляет специально для этой цели фирма «Доу Кемикл» (Dow Chemical).

Население было возмущено этими событиями и совершенно не осознавало собственной вины в случившемся. Напротив, острие проблемы повернулось в другую сторону. В Ираке живут различные национальные меньшинства, частично рассеянные небольшими группами. Не было ли у них оснований обвинить багдадское правительство в геноциде путем отравлений? То, что даже вполне благое намерение может быть совершенно превратно истолковано враждебно настроенными соседями, – это, конечно, вещь совсем не новая в сосуществовании людей!

16. История с ДДТ

Базельскому химику Паулю Герману Мюллеру – руководителю лаборатории фирмы «Гейги» (Geigy) за обнаружение у ДДТ поразительных инсектицидных свойств была присуждена Нобелевская премия в области физиологии и медицины. Основанием для этого послужил тот факт, что с помощью ДДТ впервые удалось провести успешную борьбу с переносчиками малярии и сыпного тифа и таким образом искоренить эти заболевания. Секрет такой чудесной эффективности заключался в широком спектре действия препарата в сочетании с исключительной персистентностью (химической устойчивостью) и, по-видимому, лишь незначительной токсичностью для теплокровных (кто съедал булочку из муки, загрязненной гезаролом*, в последующие дни производил впечатление совершенно здорового человека).

* Синоним ДДТ. – Прим. перев.

Соотношение между индексом яичной скорлупы и логарифмом содержания ДДЭ у сокола сапсана в Австралии

Рис. 14. Соотношение между индексом яичной скорлупы [весом скорлупы (мг), деленным на произведение ее длины и ширины (мм2)] и логарифмом содержания ДДЭ (продукт разложения ДДТ) (мг на 1 кг сырого веса содержимого яйца) у сокола сапсана (Falco peregrinus) в Австралии. Толщина скорлупы яйца выражена также в процентах от «нормальной» толщины (принятой до 1947 г. в качестве средней величины)

Изменение индекса толщины яичной скорлупы у ястреба в период с 1870 по 1975 годы

Рис. 15. Изменение индекса толщины яичной скорлупы у ястреба (Accipiter nisus) в период с 1870 по 1975 годы. Каждая точка соответствует средней величине для полной кладки. Величины взяты из всех крупных районов острова Великобритания. Излом кривой около 1947 года совпадает с годом первого широкого применения ДДТ в сельском хозяйстве Англии (Newton, 1981)

Именно широкий спектр воздействия и устойчивость ДДТ оказались впоследствии коварными сторонами этого вещества. Из-за широкого спектра действия вместе с вредными насекомыми уничтожались и полезные. А устойчивость приводила к тому, что ДДТ накапливался в пищевых цепях и оказывал губительное действие на их концевые звенья: например, соколы-сапсаны стали исчезать оттого, что вследствие отравления ДДТ они откладывали яйца со слишком тонкой скорлупой, которые во время насиживания разбивались.

В результате накопления множества подобных сведений за ДДТ утвердилась слава чудовищно опасного препарата. Когда в США концентрация ДДТ в молоке кормящих матерей в результате передачи этого вещества через пищевые цепи достигла уровня в 4 раза выше предельно допустимого, применение ДДТ было запрещено. И если, несмотря на это, ВОЗ все же рекомендует применять его в ряде развивающихся стран для борьбы с инфекционными болезнями, то сейчас это делается по совершенно особым соображениям (нередко экономическим). Впрочем, там, где речь идет о спасении человеческих жизней, я бы еще согласился на применение некоторых обычно проклинаемых мною пестицидов – по крайней мере в качестве чрезвычайной неотложной меры.

Последовательность введения запрета на применение ДДТ в различных странах (если я правильно информирован) была следующая: Новая Зеландия; СССР; Венгрия; Швеция; Дания; Финляндия; далее прочие страны. Правда, не всегда имели место полные неограниченные запреты. Например, в СССР вначале не могли отказаться от использования ДДТ в борьбе с клещами – переносчиками таежного энцефалита, так как для этого особого случая еще не было другого подходящего акарицида; в Средней Европе с некоторыми вредителями лесов тоже пока можно бороться только с помощью ДДТ.

Впрочем, по причине токсичности следовало бы запретить не один только ДДТ: просто этот препарат, будучи старейшим из синтетических инсектицидов (почему, кстати, и знают так много о его токсичности), находился в поле зрения общественной критики. Между тем некоторые другие современные инсектициды в действительности ничуть не менее вредны, чем ДДТ, однако пока еще нет никаких ограничений на их использование: все дело в том, что они не исследованы так всесторонне, как ДДТ, и об их токсичности известно очень немногое. То, что ДДТ так хорошо изучен в этом отношении, – следствие его чрезвычайной популярности; представители всех областей науки, которые почему-либо хотели изучить какой-нибудь инсектицид, всегда в первую очередь обращались именно к ДДТ (см. также Rüdt, 1978, S. 22).

17. ДДТ в пищевых цепях

Если ДДТ распыляют с самолета над каким-нибудь стоячим водоемом, то уже через несколько дней его нельзя обнаружить в воде, так как к этому времени он успевает полностью перейти из воды в микроорганизмы (бактерии, водоросли) или же в донный ил водоема. Потому-то у некоторых прежних исследователей при поверхностном наблюдении сложилось ложное представление, будто бы ДДТ «исчезает» и поэтому в обработке им поверхности водоемов не кроется никакой опасности (а значит, было бы не так уж опасно опрыскивать инсектицидными препаратами и участки суши). Однако в действительности весь ДДТ уже перешел в начальные звенья пищевых цепей, и в результате был запущен процесс его накопления, которым определяется столь пагубная роль ДДТ в пищевой цепи.

Пищевые цепи представляют собой одну из основных форм взаимосвязи между различными организмами, каждый из которых пожирается другим видом – как правило, меньший более крупным. В более узком смысле о пищевой цепи говорят в том случае, когда «различные виды животных связаны друг с другом конкретными прямыми пищевыми связями» (Palissa, из частного письма). Тогда в биосфере «происходит непрерывный ряд превращений веществ» в последовательности звеньев жертва – хищник. Пример эпизитической водной пищевой цепи (протекающей в сторону увеличения размеров тела): растворенные вещества – фитопланктон – рачки – рыбы – хищные рыбы – теплокровные животные, питающиеся рыбой.

В случае потребления чужеродных веществ, если эти вещества не могут быть «переварены» или просто выведены из организма, начинается их накопление по ходу пищевой цепи. Это накопление происходит вследствие того, что в пищевой цепи организмы-потребители обладают меньшей биомассой, чем те, которые служат им пищей (хотя, конечно, размеры тела у потребителей больше, чем у их жертв). Именно таким образом происходит концентрирование пестицидов, при котором первичные звенья пищевой цепи получают лишь незначительные количества токсиканта, а конечные звенья уже отравляются.

Меньшая биомасса вида-потребителя обусловлена тем, что особи этого вида используют для построения своего тела только часть потребляемой пищи, тогда как остальное расходуется в энергетическом обмене. Однако неразлагающиеся ядовитые вещества не используются в энергетическом обмене и большей частью накапливаются в организме, особенно в том случае, если данное вещество имеет длительный период биологического полураспада. Коэффициент накопления неразлагающихся ядов, в особенности биоцидов, в большинстве случаев составляет около 10 на каждую ступень пищевой цепи (Nuorteva). Таким образом, рыбы могут содержать во много тысяч раз больше инсектицидов, чем окружающая их водная среда. К тому же накопление ядов в пищевых цепях нередко усиливается из-за меньшей быстроты реакции и ограниченной подвижности животных, несущих в себе яд, так как сильнее отравленные особи легче становятся добычей хищников, чем все остальные! Вследствие этого в пищевой цепи водоема наиболее высокое содержание ядовитых веществ отмечается у хищных рыб.

В дальнейшем ядовитые вещества могут от них переходить к птицам, питающимся рыбой (и к ластоногим, а также и к человеку).

Практическое значение пищевых цепей, передающих ДДТ, особенно четко выявляется в сравнительных исследованиях на двух сходных популяциях, например на двух колониях скоп в США (цит. по Eichler, 1969). Колония в штате Мэриленд сохраняла свою численность на протяжении многих лет, тогда как колония в штате Коннектикут ежегодно уменьшалась на 30%. Конечно, и мэрилендские скопы (Pandion haliaeetus) питались рыбой, содержащей ДДТ (а что им еще оставалось делать, когда сегодня во всем мире – даже в Антарктиде! – в рыбах находят следы ДДТ?). Однако при исследовании рыб, служивших пищей скопам (для этой цели рыбу специально извлекали из гнезд скоп), было обнаружено, что у коннектикутских рыб остаточные количества ДДТ в 5...10 раз больше, чем у рыб, взятых из гнезд мэрилендских скоп. После этого стало понятно, почему в Мэриленде в каждом гнезде скопы выводят втрое больше птенцов, чем в Коннектикуте! В Коннектикуте содержание ДДТ в яйцах скоп было так велико, что уже среди эмбрионов отмечался высокий процент гибели!

Во многих случаях мы знаем только то, что данный инсектицид токсичен, но не знаем истинного механизма его действия. У ДДТ довольно точно известен один эффект (помимо ряда других), так как его много раз выявляли в экспериментах: то, что у чаек и пеликанов скорлупа яиц становится очень тонкой и яйца впоследствии разбиваются. Когда я однажды сообщил об этом одному хирургу, тот сказал, что теперь ему понятно, почему в наше время у людей так часто случаются переломы костей (иногда даже при лежании в постели).

Другие эффекты ДДТ, затрагивающие размножение птиц, не так легко воспроизводятся в эксперименте, поэтому их удалось подробно исследовать лишь позднее; к ним относятся: уменьшение размеров кладки яиц, отказ от насиживания, повышение смертности зародышей и птенцов вследствие загрязнения ДДЭ* (продуктом обмена ДДТ).

* 1,1-дихлор-2,2-бис(n-хлорфенил)-этилен. – Прим. перев.

У ястреба-перепелятника (Accipiter nisus) уменьшение толщины скорлупы в среднем на 12,5% коррелировало с загрязнением ДДЭ; кроме того, была резко повышена доля яиц с отмершими эмбрионами. Из 59 ястребиных яиц, найденных в брошенных кладках и помещенных в инкубатор, по меньшей мере 64% содержали отмерших зародышей. При изучении яиц, большей частью взятых из гнезд, где выводки полностью погибли, четко выделялась корреляция между токсической нагрузкой ДДЭ и гибелью эмбрионов. Такие ястребиные яйца содержали в среднем 65,5 мг/кг ДДЭ (в пересчете на сухой вес). В Средней Европе из всех видов хищных птиц именно ястреб-перепелятник находится под наибольшей угрозой из-за загрязнения среды пестицидами.

Одни и те же дозы ДДЭ действуют на разные виды по-разному. Например, у ястреба-перепелятника уже при нагрузке ДДЭ, равной 3 мг/кг (в пересчете на сухой вес), толщина скорлупы яиц уменьшается, тогда как у пустельги 7 мг/кг еще не вызывают никакого утончения скорлупы. Содержание ДДЭ было наиболее высоким в яйцах скоп, болотных луней, соколов-сапсанов и ястребов-перепелятников, а наименьшим – у куликов-сорок, полярных крачек и серебристых чаек.

В Англии сокращение численности соколов-сапсанов (Hierofalco peregrinus), несомненно, обусловлено воздействием ДДТ (правда, определенную роль при этом, может быть, играют также полихлорированные дифенилы и дилдрин). Когда было запрещено применять ДДТ (и дилдрин), в некоторых районах популяция соколов-сапсанов вскоре вновь увеличилась.

Мур (Moore) подчеркивает, что ни в одном из случаев, где, судя по косвенным данным, падение численности какого-либо вида птиц объясняется воздействием инсектицидов, неопровержимых доказательств этому нет; но если бы мы захотели дожидаться таких доказательств, то тем временем все эти виды уже давно бы вымерли.

Падение численности хищных птиц часто объясняют только тем, что их тревожат во время насиживания – например, даже просто гуляющие люди. Но не следует ли к тому же предположить, что хищные птицы, отягощенные инсектицидами, становятся в период насиживания более чувствительными и потому им гораздо труднее переносить «беспокойство на гнезде»? Ведь ДДТ обладает нейротоксичностью, он раздражает нервную систему; поэтому организм, подвергающийся воздействию ДДТ, должен острее реагировать на факторы окружающей среды, чем нормальный организм.

Один из наиболее очевидных примеров простой пищевой цепи, в которой циркулирует ДДТ, – это случай с перелетными дроздами, описанный Рэчел Карсон (Carson). Гриб Ceratocystis ulmi вызывает опустошительную болезнь вязов – так называемую голландскую болезнь. Ее передает вязовый заболонник (Scolytes multistriatus), с которым борются, обрабатывая ДДТ отдельные деревья или целые парковые насаждения. Остатки осевшего на деревьях ДДТ попадают затем с дождевой водой, а осенью и вместе с опадающими листьями в почву или в листовую подстилку. Там ДДТ поглощают дождевые черви, поедающие остатки листьев, и он откладывается и даже концентрируется в их телах. Если теперь перелетные дрозды (Turdus migratorius) будут поедать преимущественно дождевых червей, то они будут хронически отравляться ДДТ. Правда, непосредственно погибает только часть дроздов, но зато у всех у них по меньшей мере нарушается способность к размножению. Они становятся стерильными или откладывают бесплодные яйца; либо умирают их птенцы, особенно в тех случаях, когда и их кормят дождевыми червями, содержащими ДДТ. Именно поэтому «побочным результатом» борьбы с голландской болезнью вязов, проводившейся с помощью ДДТ, явилось почти полное исчезновение перелетных дроздов на значительных территориях США.

Когда отравление ДДТ или другими инсектицидами угрожает разным видам птиц в неодинаковой степени, то это зависит не столько от непосредственной чувствительности к инсектицидам (которая может варьировать у разных видов, а внутри вида – от особи к особи), сколько от особенностей экологии, физиологии, поведения и динамики популяций различных птиц. Многие виды певчих птиц гораздо более чувствительны, чем, например, домовый воробей. Этот последний переносит большие дозы ДДТ, но, кроме того, он еще умеет (в отличие от несинантропных певчих птиц) распознавать загрязненный ДДТ корм и научился отказываться от него.

Оптимисты с радостью ухватились за этот факт, будто бы позволяющий рассчитывать на то, что и человек окажется намного более выносливым и способным к адаптации. От такого оптимизма следует, однако, предостеречь. Даже если бы это было действительно так, это означало бы всего лишь отсрочку того момента, когда загрязнение достигнет критического уровня. До сих пор человеку благодаря разнообразию его питания удавалось избегать более серьезных токсических нагрузок; но при дальнейшем загрязнении окружающей среды очень скоро дело может дойти до того, что для него уже не найдется безопасной пищи.

Конечно, уже придуманы и испытаны методы, позволяющие уменьшить накопление токсикантов в пищевой цепи. Например, для того чтобы исключить мясо домашних животных из пищевой цепи, содержащей ДДТ предлагается давать животным противосудорожные средства (такие как барбитураты). Эти последние активируют печеночные ферменты и таким образом уменьшают депонирование ДДТ (здесь мне так и хочется воскликнуть: какой абсурд!).

Тот факт, что ДДТ находят в жировой ткани человека часто истолковывается так, что якобы ДДТ неопасен для человека – ведь он же депонирован в жировой ткани и благодаря этому должен быть нейтрализован. Так ли это безобидно на самом деле?

В связи с этим мне хотелось бы привести следующее высказывание (Rüdt, 1978, S. 21): «Если даже определяемые до сих пор концентрации в жировых тканях человека сами по себе не вызывают тревоги, то все же есть опасность, что в случае голодания, лечения от тучности и при беременности расщепляться будет лишь депонированный жир, но отнюдь не ДДТ, который может при этом попасть в систему кровообращения».

То, что в годы после окончания второй мировой войны во многих странах у людей образовались отложения ДДТ в жировых тканях (сначала в результате борьбы с платяными вшами при помощи дуста ДДТ, а позднее вследствие поглощения ДДТ с пищей), первое время препятствовало вторичному появлению головных вшей Pediculus capitis (попутно уничтоженных при борьбе с платяными вшами). Лишь после того как применение ДДТ было ограничено (так называемый запрет на ДДТ) и подросло новое поколение людей, в организме которых уже почти не было ДДТ, это препятствие отпало: человеческая кровь перестала быть токсичной для вшей, и с конца 60-х годов головные вши смогли распространиться снова.

Согласно подсчетам, сделанным в ФРГ в 1981 г., каждый грудной ребенок уже с загрязненным молоком матери получает там в среднем вдвое большее количество ДДТ, в 8 раз больше гексахлорбензола и в 13 раз больше полихлорированных дифенилов, чем это допускается по нормам. Максимальные величины показывают, что в организме некоторых матерей возможно накопление 80-кратных количеств ДДТ, 90-кратных – гексахлорбензола и 60-кратных – поли-C1-дифенилов. Эти данные были бы удручающими, если бы нельзя было предположить, что такую информацию о материнском молоке распространяют фирмы, производящие продукты для детского питания.

В зоологическом саду Лос-Анджелеса недавно погибли многие бакланы и чайки. Перед смертью у них наблюдалась сильная дрожь. После вскрытия были выявлены смертельные количества ДДТ в печени и в мозгу. ДДТ был обнаружен в их основном корме – в рыбе, которую вылавливали вблизи полуострова Палос-Вербес. В 20 километрах от этого места в море вливаются сточные воды из очистных установок Лос-Анджелеса. Хотя в последние шесть лет эти стоки уже не содержали ДДТ, на морском дне до сих пор сохранились отложения, медленно выделяющие в воду аккумулированный в них ДДТ. Поэтому токсикант может еще и сегодня поглощаться рыбами!

18. Аккумуляция ДДТ

Серьезность проблемы токсикантов окружающей среды в целом и накопления их в пищевых цепях в частности, мне кажется, особенно наглядно демонстрируют данные о возможной аккумуляции ДДТ в организме животных. Разумеется, среди приведенных ниже цифровых данных есть и результаты отдельных конкретных исследований, которые пока нельзя обобщить. К тому же эти данные касаются только ДДТ – инсектицида, ныне уже в основном вышедшего из моды. И все-таки они почти мгновенно проясняют ситуацию, в которой мы сейчас находимся!

Накопление токсикантов в водной пищевой цепи

Рис. 16. Накопление токсикантов в водной пищевой цепи (по Stiegele Klee, из Stürmer)

А в связи с тем фактом, что ДДТ сегодня «вышел из моды», можно заметить, что в результате прежнего неограниченного применения его для борьбы с вредителями сегодня в биологическом круговороте должно находиться около миллиона тонн ДДТ. Как известно, из всех хлорорганических инсектицидов ДДТ и продукты его превращений проявляют наибольшую устойчивость в биологических системах (особенно если учесть, что полихлорированные дифенилы помимо прочего могут возникать и как продукт превращения ДДТ), и период полураспада в «10 лет» для ДДТ тоже, конечно, не при всех условиях можно считать абсолютным. Поэтому не следует удивляться прогнозам экспертов относительно того, что и к 1995 г. нельзя рассчитывать на уменьшение содержания ДДТ в рыбах, хотя уже примерно с 1970 г. его применение было ограничено во всем мире.

Водоросль кладофора за три дня извлекает из воды столько ДДТ, что его концентрация увеличивается при этом в 3000 раз. Асцидии при поглощении ДДТ из воды концентрируют его в миллион раз.

При исследовании одной экосистемы в озере Мичиган было обнаружено следующее накопление ДДТ в пищевых цепях:

0,014 мг/кг (в расчете на сырой вес) в донном иле озера;
0,41 мг/кг в ракообразных, питающихся на дне;
3...6 мг/кг в различных рыбах (бельдюговые, язь, елец);
свыше 2400 мг/кг в жировой ткани чаек, питающихся рыбой.

Схема круговорота пестицидов в стоячем водоеме

Рис. 17. Схема круговорота пестицидов в стоячем водоеме (Gunkel, 1981)

Тысячекратное повышение концентрации ДДТ в пищевой цепи

Рис. 18. Тысячекратное повышение концентрации ДДТ в пищевой цепи

Дамен и Хейс (Dahmen, Heiss, 1973, S. 4) приводят следующий пример последовательного концентрирования ДДТ:

ДДТ-содержащий ил1 ×
Растения (водоросли?)10 ×
Мелкие организмы (рачки?)100 ×
Рыбы1000 ×
Хищные рыбы10 000 ×

В основе этого расчета лежит то простое правило, что в каждом последующем звене пищевой цепи содержание ДДТ увеличивается примерно в 10 раз.

Для Антарктики типичны короткие пищевые цепи. Здесь могут быть существенным образом связаны всего лишь три звена, например планктон – планктоноядные морские рачки (криль) – морские млекопитающие (такие, как усатые киты). Однако наряду с этим существуют и другие пищевые связи, включающие водоросли, каракатиц, рыб и бентосные организмы. По сравнению с Антарктикой в других морях пищевые взаимосвязи переплетаются гораздо сильнее и включают большее число ступеней (трофических уровней). Очень схематичное сравнение Южного Ледовитого океана и Северного моря дает такую картину:

Антарктика: фитопланктон – криль (1 г) – финвал (50 т). Северное море: фитопланктон – растительноядные веслоногие рачки (2 мг) – хищные веслоногие рачки – сельдь (200 г) – треска (5 кг)

В грудном молоке кормящих матерей в США содержится в 4 раза больше ДДТ, чем допускается санитарными нормами для коровьего молока. В США это комментируют следующим образом: «Если бы материнское молоко находилось в другой упаковке, его вообще не разрешили бы пускать в продажу».

В 1976...1979 гг. государственная служба химических исследований в Сигмарингене находила в молоке кормящих матерей такие концентрации средств защиты растений и хлорорганических соединений, которые в 20 раз выше уровней, допускаемых для коровьего молока.

В районе Гросс-Герау (южный Гессен) молоко пришлось уничтожить, так как оно содержало остатки пестицидов в недопустимо высокой концентрации.

В одном крупном промышленном центре Средней Европы несколько лет назад было специально исследовано содержание ДДТ в телах мертворожденных детей, и неожиданно оказалось, что во всех обследованных случаях оно было довольно высоким – много выше, чем обычно находят в человеческих трупах. Меня упрекали в том, что я сделал из этого недостаточно обоснованный вывод – заключил, что здесь, видимо, должна существовать причинная связь.

19. ДДТ как загрязнитель природной среды

С тех пор как мы знаем, что ДДТ подавляет фотосинтез зеленых водорослей, мы можем больше не тешить себя надеждой, будто морские водоросли смогут со временем стать неисчерпаемым резервом пищи для всего человечества. Ибо мы на десятилетия вперед настолько загрязнили весь мир ДДТ, что это вещество и впредь сможет творить свое черное дело. И если теперь мы уже едва ли будем использовать ДДТ, то все равно его место заступили другие биологически активные вещества, которые тоже вряд ли окажутся безвредными для зеленых водорослей.

В Нидерландах за 1...2 десятилетия численность пестроносых крачек (Sterna sandvicensis) снизилась с 40 000 гнездующих пар до 650. Если даже предположить, что виной тому не один только ДДТ, все же ему, безусловно, принадлежит первое место. При учетах природных популяций животных следует иметь в виду, что ДДТ никогда не действовал один: к нему всегда со временем добавлялись какие-нибудь другие инсектициды. В начале эры ДДТ – в сороковых годах, т.е. сразу па окончании второй мировой войны, первое время действительно не было ничего, кроме ДДТ. И если сегодня мы в Средней Европе почти совсем не применяем ДДТ, то его место заняли новые инсектициды, которые вряд ли менее токсичны для птиц.

В Англии за период с 1968 по 1969 г. было установлено сокращение численности серых славок на 70%, что тоже относят на счет ДДТ. Сходные данные относительно убыли популяции есть и для других видов певчих птиц, однако в большинстве случаев количественные сдвиги не так велики.

Конечно, нам следует исходить из того, что в подобных сокращениях численности повинно не только прямое токсическое воздействие ДДТ (или других инсектицидов). Как известно, ДДТ уже нанес огромный урон насекомым, а тем самым и кормовым ресурсам певчих птиц. Но ведь это тоже результат воздействия ДДТ! Другое дело, когда антропогенные изменения биотопа сокращают местообитания певчих птиц или лишают их возможностей гнездования. Со многими из подобных изменений нам приходится попросту мириться. Тогда тем более трагично, когда к этому добавляются, действуя в том же направлении, еще инсектициды, без которых, в сущности, можно было бы обойтись.

Расчеты показали, что неврологические нарушения в головном мозгу, вызываемые у какого-либо дикоживущего вида птиц даже ничтожными остатками ДДТ, способны поставить под угрозу выживание всего вида. Многие, в первую очередь менее многочисленные, виды птиц и без того находятся в весьма неустойчивом равновесии с окружающей их средой; они еще могут как-то существовать, но достаточно даже одного отрицательного фактора, чтобы это равновесие нарушилось. (Но, безусловно, это никак не относится к домовому воробью).

Серьезная угроза существованию дневных хищных птиц и сов связана в первую очередь с опасностью, которой они подвергаются как концевые звенья пищевых цепей. Другие группы животных, например рукокрылые, сами по себе чрезвычайно чувствительны к ДДТ, и именно поэтому им угрожает вымирание.

Биологическое накопление инсектицидов в пищевых цепях обусловлено устойчивостью этих веществ. Между тем инсектициды, как правило, только тогда могут быть высокоактивными, когда они либо очень ядовиты, либо очень стойки. Поэтому многие выводы из наблюдений, касающихся ДДТ, в принципе можно распространить и на другие стойкие инсектициды. И, к сожалению, в этом отношении имеется уже достаточный опыт [так, например, для кротов (Talpa europaea) опасен севин (карбарил)].

20. Отказ от применения ДДТ

Я был не только свидетелем, но и активным участником истории оценки инсектицида ДДТ, поскольку в 1944 г. я принадлежал к числу первых немецких биологов, испытывавших действие этого вещества на насекомых, и вскоре после этого, пожалуй, одним из первых стал предупреждать о его токсических свойствах. Когда отрицательные последствия применения ДДТ стали поистине необозримыми, от его использования отказались, и это, безусловно, было верным шагом. Однако я продолжаю придерживаться своих выводов, которые я неоднократно формулировал в лекциях и докладах с самого момента предания ДДТ анафеме: ДДТ был отвергнут не столько по причине его особой токсичности, не потому, что он будто бы намного опаснее, чем остальные современные инсектициды, а прежде всего потому, что он был первым синтетическим инсектицидом эры ДДТ и благодаря этому наиболее основательно изучен в токсикологическом отношении. Эти выводы подтвердились, по крайней мере при разработке средств борьбы с насекомыми, опасными для здоровья человека, так как при этом быстро выяснилось, что первые инсектициды, пришедшие на смену ДДТ, ничуть не менее токсичны.

Рюдт (Rüdt, 1978, S. 22) замечает по этому поводу, что запрет на применение ДДТ явился акцией «против одного совершенно определенного хлорорганического соединения» и, таким образом, «позволил отступить на задний план другим соединениям», которые ввиду сходной химической структуры заслуживают по меньшей мере равного внимания.

Фармаколого-токсикологическому изучению ДДТ благоприятствовал к тому же известный «эффект массовой психологии». Каждый работавший в данной области и желавший исследовать механизм действия инсектицидов стремился проводить опыты с ДДТ, даже тогда, когда давно уже имелся большой выбор других инсектицидов – так прочно было еще представление о ДДТ как «образцовом» препарате. И в результате о ДДТ вскоре стало известно много больше, чем о любом другом веществе с инсектицидной активностью.

Впрочем, пригодность любого биологически активного вещества для борьбы с вредными насекомыми зависит не только от его эффективности в отношении насекомых, но и от его цены. А цена, которую придется платить, в свою очередь зависит, помимо всего прочего, от размеров предприятия, вырабатывающего данный препарат. Строить большое предприятие имеет смысл лишь в том случае, когда производимая продукция будет иметь хороший сбыт. Чем шире применяется инсектицид, тем он становится дешевле (во всяком случае, эта верно в отношении его себестоимости; в отношении рыночной цены – не всегда).

Такая взаимосвязь явилась одной из причин почти универсального применения ДДТ после второй мировой войны, в том числе и в Средней Европе. Уничтожением платяных вшей (Pediculus humanus) здесь мы в первую очередь обязаны именно ДДТ. Вслед за этим он прослыл универсальным средством для борьбы со всякого рода вредными насекомыми: и оставался им до той поры, пока, наконец, не была установлена его опасность.

Неограниченное применение должно было бы в любом случае внушить опасение; да оно, в конце концов, вовсе и не было необходимым. После Новой Зеландии СССР стал второй страной, где было запрещено применение ДДТ. Правда, запрет был введен не без оговорок. Имелось два особых случая, когда вначале нельзя было обойтись без ДДТ.

Это были, во-первых, некоторые очаги малярии в отдаленных, мало заселенных горных долинах Узбекистана. Здесь все еще не удавалось полностью искоренить малярию, и именно для этой цели было пока разрешено использовать ДДТ.

А во-вторых, существовали временные поселки в тайге. По какой бы причине там ни сооружали бараки (с целью основать поселок или под общежитие для строителей нефтепровода или геологической экспедиции), всегда приходилось рубить в девственной тайге деревья, и в результате возникала прогалина. Немедленно размножались мыши, а вслед за ними иксодовые клещи – и вот уже готов новый очаг клещевого энцефалита (Eichler, 1980 Н). Эффективно бороться с клещами можно только при помощи ДДТ.

В данном случае речь шла о спасении человеческих жизней. Но и против определенных вредителей леса, борьба с которыми особенно трудна, как в ГДР, так и в ФРГ тоже еще предусматривалось особое разрешение на использование ДДТ. Подобное разрешение, позволявшее в виде исключения применять ДДТ против большого соснового слоника (Hylobius abietis) и пихтовой листовертки-толстушки (Cacoecia murinana), действовало в ФРГ до конца 1977 г.

Несколько иначе обстоит дело с борьбой против малярии в развивающихся странах Африки. Если там еще и сегодня ВОЗ не только допускает, но даже рекомендует применение ДДТ, то это объясняется, в частности, тем, что любой другой инсектицид, заменяющий ДДТ, стоил бы в 10 раз дороже, и его, вероятно, избегали бы применять; в случае запрета на ДДТ иные из этих бедных стран могли бы вообще прекратить борьбу с инфекционными заболеваниями из финансовых соображений.

 

Главы 21...30

Оглавление


Дата публикации:

12 января 2008 года

Электронная версия:

© НиТ. Раритетные издания, 1998



В начало сайта | Книги | Статьи | Журналы | Нобелевские лауреаты | Издания НиТ | Подписка
Карта сайта | Cовместные проекты | Журнал «Сумбур» | Игумен Валериан | Техническая библиотека
© МОО «Наука и техника», 1997...2013
Об организацииАудиторияСвязаться с намиРазместить рекламуПравовая информация
Яндекс цитирования