N-T.ru / Текущие публикации / Литературное творчество ученых

Великая теорема Ферма

Валерий Петров

Как рассказывает В. Латышев, «Более 350 лет математики всего мира безуспешно ищут ответ на вопрос: «Верна ли великая теорема Ферма?». Не находит его и дьявол, изучив за 10 часов все без исключения разделы математики и потратив остаток времени на собственные изыскания, он, за 10 минут до истечения срока, появляется с пачкой исписанных листков, швыряет их на пол и топчет ногами. И, признав свое поражение, исчезает... Однако спустя несколько минут появляется вновь и вместе с человеком начинает искать ответ на поставленный вопрос».

В действительности, однако, все было несколько иначе. Когда дьявол узнал об условии заключения договора с ученым-математиком о продажи его души, он рассмеялся и сказал: «Нет ничего проще. У меня есть доказательство этой теоремы, написанное самим Ферма». С этими словами дьявол достал из кармана аккуратно сложенный лист бумаги и протянул его ученому. Флэгг уселся поудобнее в кресло у камина и стал читать.

«Пусть имеется три целых числа, удовлетворяющих уравнению:

zn = xn + yn(1)

Известно, что три числа, удовлетворяющих уравнению (1), должны удовлетворять следующим условиям:

  • одно из чисел, например, z, должно быть четным, два других – нечетными;
  • числа должны быть взаимно простыми, т.е. попарно не должны иметь общих множителей;
  • никакие два числа не могут быть равны друг другу.

Предположим для определенности, что z > x > y.

Очевидно, что число z меньше суммы двух других чисел, т.е.

z < x + y(2)

Пусть имеется три отрезка длиной z, x, y, удовлетворяющих условию (2). Тогда в силу известной теоремы на этих отрезках можно построить треугольник как на сторонах. Известно, что треугольник, между сторонами которого имеет место соотношение (1), при n > 2 остроугольный.

Тогда для сторон этого треугольника имеет место соотношение, вытекающее из теоремы косинусов:

z2 = x2 + y2 – 2xycosα:

где α – угол между сторонами x и y.

Построим остроугольный треугольник ABC со сторонами AB = x, BC = y, AC = z. Опустим из точки A остроугольного треугольника ABC перпендикуляр на противолежащую сторону BC, как это изображено на рисунке.

Великая теорема Ферма. Остроугольный треугольник

Рис. 1. Остроугольный треугольник

Из треугольника BC1C находим cosα = m1 / BC = m1 / y. Подставляя значение cosα в (2), получим:

z2 = x2 + y2 – 2xym1 / y

z2 = x2 + y2 – 2xm1(3)

Таким образом, для одного и того же треугольника одновременно имеем два различных соотношения между его сторонами: (1) и (3). Тогда суть теоремы может быть выражена иначе: Требуется доказать, что никакие целочисленные решения уравнения (3) не являются таковыми для уравнения (1).

Умножим уравнение (3) на zn–2. Получим:

zn–2z2 = zn–2x2 + zn–2y2 – 2xzn–2m1(4)

Пусть zn–2 = xn–2 + a = yn–2 + b, где a и b – некоторые целые числа, обеспечивающие указанные равенства. Тогда, подставляя значение zn–2 в (4), получим:

zn = (xn–2 + a) x2 + (yn–2 + b) y2 – 2x(xn–2 + a)m1

zn = xn + ax2 + yn + by2 – 2x(xn–2 + a)m1(5)

Вычитая (1) из (5), получим:

0 = ax2 + by2 – 2x(xn–2 + a)m1(6)

Таким образом, если при каких-либо целочисленных значениях чисел x и y уравнение (6) окажется равным нулю, то решение этого уравнения (т.е. значения чисел x и y) будет одновременно решением уравнения (1).

Решая данное уравнение, получим:

by2 = 2x(xn–2 + a)m1ax2

by2 = x[2(xn–2 + a)m1ax]

Запишем для простоты вычислений 2(xn–2 + a)m1ax = k. Получим:

by2 = kx,

откуда следует:

y = √kx/b,

т.е. √x является одним из множителей числа y.

Таким образом, целочисленные решения уравнения (6) оказываются возможными только при условии, что √x является одним из множителей числа y, что противоречит начальным условиям задачи. Следовательно, ни при каких значениях чисел x и y, удовлетворяющих начальным условиям задачи, уравнение (6) не может быть равно нулю. Следовательно, ни при каких значениях чисел x и y, удовлетворяющих начальным условиям задачи, уравнение (5) не может быть преобразовано в уравнение (1). Следовательно, ни при каких значениях чисел x и y, удовлетворяющих начальным условиям задачи, уравнение (1) не может иметь каких-либо целочисленных решений. Это значит, что в остроугольном треугольнике, между сторонами которого имеет место соотношение (1), по крайней мере, одна из сторон не может быть выражена никаким целым числом. Что и требовалось доказать».

Флэгг задумался на мгновенье и неожиданно швырнул бумагу прямо в огонь. «Зачем Вы это сделали?» – воскликнул дьявол. «Я нахожу, что слишком дешево продал свою душу. Так пусть же никто больше не воспользуется этим доказательством!» – ответил Флэгг.

«В самом деле», подумал дьявол, «пусть математики еще поломают головы над доказательством этой теоремы».

 

Дата публикации:

1 апреля 2002 года

Электронная версия:

© НиТ. Текущие публикации, 1997



В начало сайта | Книги | Статьи | Журналы | Нобелевские лауреаты | Издания НиТ | Подписка
Карта сайта | Cовместные проекты | Журнал «Сумбур» | Игумен Валериан | Техническая библиотека
© МОО «Наука и техника», 1997...2013
Об организацииАудиторияСвязаться с намиРазместить рекламуПравовая информация
Яндекс цитирования